[1] DeJong, J. T. & Westgate, Z. J. Role of initial state, material properties, and confinement condition on local and global soil-structure interface behavior. ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 1, pp. 1646-1660, 2009.
[2] DeJong, J. T., White, D. J., & Randolph, M. F. Microscale observation and modeling of soil-structure interface using particle image velocimetry. Soils and Foundations. Vol. 46, No. 1, pp. 15-28, 2006.
[3] Porcino, D., Fioravanye, V., Ghionna, V. N., & Pedroni, S. Interface behavior of sands from constant normal stiffness direct shear tests. ASTM Geotechnical Testing Journal. Vol. 26, No. 3, pp. 1-13, 2003.
[4] Fioravante, V. On the shaft friction modeling of non-displacement piles in sand. Soils and Foundations, Vol. 42, No. 2, pp. 23-33, 2002.
[5] Miller, G. A. & Hamid, T. B. Interface direct shear testing of unsaturated soil. ASTM Geotechnical Testing Journal. Vol. 30, No. 3, pp. 182-191, 2007.
[6] Hu, L. & Pu, J. Testing and modeling of soil-structure interface. ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 8, pp. 851-860, 2004.
[7] Lings, M. L. & Dietz, M. S. The peak strength of sand-steel interfaces and the role of dilation. Soils and Foundations, Vol. 45, No. 6, pp. 1-14, 2005.
[8] Kishida, H. & Uesugi, M. Tests of interfaces between sand and steel in simple shear apparatus. Géotechnique, Vol. 37, No. 1, pp. 45-52, 1987.
[9] Uesugi, M. & Kishida, H. Frictional resistance at yield between dry and mild steel. Soils and Foundations. Vol. 26, No. 4, pp. 139-149, 1986.
[10] Evgin, E. & Fakharian, K. Effect of stress path on the behavior of sand-steel interface. Canadian Geotechnical Journal, Vol. 33, pp. 853-865, 1996.
[11] Fakharian, K. & Evgin, E. Cyclic simple shear behavior of sand-steel interfaces under constant normal stiffness condition. ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 123, No. 12, pp. 1098-1105, 1997.
[12] Lehan, B. M., Jardine, R. J., Bond, A. J., & Frank, R. Mechanisms of shaft friction in sand from instrumented pile tests. ASCE Journal of Geotechnical Engineering, Vol. 119, No. 1, pp. 19-35, 1993.
[13] Krabbenhoft, S., Andersen, A., & Damkilde, L. The tensile capacity of bored piles in frictional soils. Canadian Geotechnical Journal, Vol. 45, pp. 1715-1722, 2008.
[14] Rollins, K. M., Clayton, R. J., Mikesell, R. C., & Blaise, B. C. Drilled shaft side friction in gravelly soils. ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 8, pp. 987-1003, 2005.
[15] Tabucanon, J. T., Airey, D. W., & Poulos, H. G. Pile skin friction in sands from constant normal stiffness tests. ASTM Geotechnical Testing Journal, Vol. 18, No. 3, pp. 350-364, 1995.
[16] Lehan, B. M., Gaudin, C. & Schneider, J. A. Scale effect on tension capacity for rough piles buried in dense sand. Géotechnique, Vol. 55, No. 10, pp. 709-719, 2005.
[17] Liu, H., Song, E., & Ling, H. I. Constitutive modeling of soil-structure interface through the concept of critical state soil mechanics. Mechanics Research Communications, Vol. 33, pp. 515-531. 2006.
[18] Lashkari, A. Prediction of the shaft resistance of nondisplacement piles in sand. International Journal for Numerical and Analytical Methods in Geomechanics. Vol. 37, pp. 904-931, 2013.
[19] Lashkari, A. A critical state model for saturated and unsaturated interfaces. Scientia Iranica, Vol. 19, No. 5, pp. 1147-1156. 2012.